Flexibility of metal binding sites in proteins on a database scale.

نویسندگان

  • Mariana Babor
  • Harry M Greenblatt
  • Marvin Edelman
  • Vladimir Sobolev
چکیده

Protein metal binding sites in the pre-bound (apo) state, and their rearrangements upon metal binding were not analyzed previously at a database scale. Such a study may provide valuable information for metal binding site prediction and design. A high resolution, nonredundant dataset of 210 metal binding sites was created, containing all available representatives of apo-holo pairs for the most populated metals in the PDB. More than 40% of the sites underwent rearrangements upon metal binding. In 30 cases rearrangements involved the backbone. The tendency for side-chain rearrangement inversely correlates with the number of first-shell residues. Analysis of side-chain reorientations as a result of metal binding showed that in 95% of the rigid-backbone binding sites at most one side chain moved. Thus, in general, part of the first coordination shell is already in place in the pre-bound form. The frequencies of side-chain reorientation directly correlated with metal ligand flexibility and solvent accessibility in the apo state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach

Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Metal ions binding study on human growth hormone by isothermal titration calorimetric method

The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for  and , and also their molar enthalpies of binding (KJ/mol for  and  KJ/mo...

متن کامل

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proteins

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2005